Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3180, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823237

RESUMO

Fibrosarcoma is a rare type of cancer that affects cells known as fibroblasts that are malignant, locally recurring, and spreading tumor in fibrous tissue. In this work, an iron plate immersed in an aqueous solution of double added deionized water, supplemented with potassium permanganate solution (KMnO4) was carried out by the pulsed laser ablation in liquid method (PLAIL). Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using different laser wavelengths (1064, 532, and 266 nm) at a fluence of 28 J/cm2 with 100 shots of the iron plate to control the concentration, shape and size of the prepared high-stability SPIONs. The drug nanocarrier was synthesized by coating SPION with paclitaxel (PTX)-loaded chitosan (Cs) and polyethylene glycol (PEG). This nanosystem was functionalized by receptors that target folate (FA). The physiochemical characteristics of SPION@Cs-PTX-PEG-FA nanoparticles were evaluated and confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), atomic force microscopy (AFM), and dynamic light scattering (DLS) methods. Cell internalization, cytotoxicity assay (MTT), apoptosis induction, and gene expression of SPION@Cs-PTX-PEG-FA were estimated in fibrosarcoma cell lines, respectively. In vivo studies used BALB/c tumor-bearing mice. The results showed that SPION@Cs-PTX-PEG-FA exhibited suitable physical stability, spherical shape, desirable size, and charge. SPION@Cs-PTX-PEG-FA inhibited proliferation and induced apoptosis of cancer cells (P < 0.01). The results of the in vivo study showed that SPION@Cs-PTX-PEG-FA significantly decreased tumor size compared to free PTX and control samples (P < 0.05), leading to longer survival, significantly increased splenocyte proliferation and IFN-γ level, and significantly decreased the level of IL-4. All of these findings indicated the potential of SPION@Cs-PTX-PEG-FA as an antitumor therapeutic agent.


Assuntos
Antineoplásicos , Fibrossarcoma , Nanopartículas de Magnetita , Nanopartículas , Animais , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/química , Polímeros , Nanopartículas de Magnetita/química , Antineoplásicos/uso terapêutico , Polietilenoglicóis/química , Fibrossarcoma/tratamento farmacológico , Ácido Fólico/química , Nanopartículas/química , Linhagem Celular Tumoral
2.
Electron. j. biotechnol ; 52: 21-29, July. 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1283484

RESUMO

BACKGROUND: Super-paramagnetic iron oxide nanoparticles (SPION) contain a chemotherapeutic drug and are regarded as a promising technique for improving targeted delivery into cancer cells. RESULTS: In this study, the fabrication of 5-fluorouracil (5-FU) was investigated with loaded Dextran (DEXSPION) using the co-precipitation technique and conjugated by folate (FA). These nanoparticles (NPs) were employed as carriers and anticancer compounds against liver cancer cells in vitro. Structural, magnetic, morphological characterization, size, and drug loading activities of the obtained FA-DEX-5-FUSPION NPs were checked using FTIR, VSM, FESEM, TEM, DLS, and zeta potential techniques. The cellular toxicity effect of FA-DEX-5-FU-SPION NPs was evaluated using the MTT test on liver cancer (SNU-423) and healthy cells (LO2). Furthermore, the apoptosis measurement and the expression levels of NF-1, Her-2/neu, c-Raf-1, and Wnt-1 genes were evaluated post-treatment using flow cytometry and RT-PCR, respectively. The obtained NPs were spherical with a suitable dispersity without noticeable aggregation. The size of the NPs, polydispersity, and zeta were 74 ± 13 nm, 0.080 and 45 mV, respectively. The results of the encapsulation efficiency of the nano-compound showed highly colloidal stability and proper drug maintenance. The results indicated that FA-DEX-5-FU-SPION demonstrated a sustained release profile of 5-FU in both phosphate and citrate buffer solutions separately, with higher cytotoxicity against SNU-423 cells than against other cells types. These findings suggest that FA-DEX-SPION NPs exert synergistic effects for targeting intracellular delivery of 5-FU, apoptosis induction, and gene expression stimulation. CONCLUSIONS: The findings proved that FA-DEX-5-FU-SPION presented remarkable antitumor properties; no adverse subsequences were revealed against normal cells.


Assuntos
Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Fluoruracila/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Polímeros , Expressão Gênica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Apoptose/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Preparações de Ação Retardada , Nanopartículas/administração & dosagem , Nanopartículas de Magnetita , Citometria de Fluxo
3.
Life (Basel) ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478036

RESUMO

BACKGROUND: Advanced nanobiotechnology provides safe and efficient drug delivery systems to deliver chemotherapy that targets cancer cells efficiently. METHODS: A polymeric-magnetic nanocarrier was composed of a dextran (DEX) shell, a superparamagnetic iron oxide (SPION) core and was conjugated with folate (FA) to carry the anticancer drug vincristine (VNC) in Tera-1 testicular tumor cells. The molecular mechanisms by which apoptosis was induced were analyzed using flow cytometry and qPCR, which exhibited anticancer activity of nanoparticles (NPs). RESULTS: This nanocarrier revealed a controlled release of VNC in citrate and phosphate buffer solutions that were maintained at pH 5.5 and pH 7.4, respectively. The Inhibitory concentration (IC50) values were greater than 5 mg/mL and displayed ten times higher cytotoxicity than the comparable free drug concentration. The Caspase-9 and P53 expressions were increased, whereas P21 and AKt1 decreased noticeably in the treated cells. The results point to the possible activation of apoptosis following treatment with NPs loaded with vincristine.

4.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374415

RESUMO

A dual-targeting nanomedicine composed of pH-sensitive superparamagnetic iron oxide core-gold shell SPION@Au, chitosan (CS), and folate (FA) was developed as a doxorubicin (DOX) antitumor medication. Microemulsion was used for preparation and cross-linking conjugation. The characteristics of the designed nanocomposite were studied using atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction, UV-visible spectroscopy, Zeta potential and vibrating sample magnetometry (VSM), and Fourier transform infrared spectroscopy. The prepared SPION@Au-CS-DOX-FA nanoparticles (NPs) were spherical with an average diameter of 102.6 ± 7 nm and displayed an elevated drug loading behavior and sustained drug release capacity. The SPION@Au-CS-DOX-FA NPs revealed long term anti-cancer efficacy due to their cytotoxic effect and apoptotic inducing efficiency in SkBr3 cell lines. Additionally, Real-time PCR outcomes significantly showed an increase in BAK and BAX expression and a decrease in BCL-XL and BCL-2. In vivo results revealed that SPION@Au significantly decreased the tumor size in treated mice through magnetization. In conclusion, prepared SPION@Au-CS-DOX-FA could be a beneficial drug formulation for clinical breast cancer treatment.

5.
Molecules ; 25(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076247

RESUMO

In the current study, the surface of superparamagnetic iron oxide (SPION) was coated with dextran (DEX), and conjugated with folic acid (FA), to enhance the targeted delivery and uptake of vinblastine (VBL) in PANC-1 pancreatic cancer cells. Numerous analyses were performed to validate the prepared FA-DEX-VBL-SPION, such as field emission scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering (DLS), Zeta Potential, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM). The delivery system capacity was evaluated by loading and release experiments. Moreover, in vitro biological studies, including a cytotoxicity study, cellular uptake assessment, apoptosis analysis, and real-time PCR, were carried out. The results revealed that the obtained nanocarrier was spherical with a suitable dispersion and without visible aggregation. Its average size, polydispersity, and zeta were 74 ± 13 nm, 0.080, and -45 mV, respectively. This dual functional nanocarrier also exhibited low cytotoxicity and a high apoptosis induction potential for successful VBL co-delivery. Real-time quantitative PCR analysis demonstrated the activation of caspase-3, NF-1, PDL-1, and H-ras inhibition, in PANC-1 cells treated with the FA-VBL-DEX-SPION nanostructure. Close inspection of the obtained data proved that the FA-VBL-DEX-SPION nanostructure possesses a noteworthy chemo-preventive effect on pancreatic cancer cells through the inhibition of cell proliferation and induction of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Nanopartículas de Magnetita/química , Neoplasias Pancreáticas/tratamento farmacológico , Vimblastina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Dextranos/química , Dextranos/farmacologia , Ácido Fólico/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/patologia , Vimblastina/farmacologia
6.
Molecules ; 25(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080798

RESUMO

This paper describes the preparation, characterization, and evaluation of honey/tripolyphosphate (TPP)/chitosan (HTCs) nanofibers loaded with capsaicin derived from the natural extract of hot pepper (Capsicum annuumL.) and loaded with gold nanoparticles (AuNPs) as biocompatible antimicrobial nanofibrous wound bandages in topical skin treatments. The capsaicin and AuNPs were packed within HTCs in HTCs-capsaicin, HTCs-AuNP, and HTCs-AuNPs/capsaicin nanofibrous mats. In vitro antibacterial testing against Pasteurella multocida, Klebsiella rhinoscleromatis,Staphylococcus pyogenes, and Vibrio vulnificus was conducted in comparison with difloxacin and chloramphenicol antibiotics. Cell viability and proliferation of the developed nanofibers were evaluated using an MTT assay. Finally, in vivo study of the wound-closure process was performed on New Zealand white rabbits. The results indicate that HTCs-capsaicin and HTCs-AuNPs are suitable in inhibiting bacterial growth compared with HTCs and HTCs-capsaicin/AuNP nanofibers and antibiotics (P < 0.01). The MTT assay demonstrates that the nanofibrous mats increased cell proliferation compared with the untreated control (P < 0.01). In vivo results show that the developed mats enhanced the wound-closure rate more effectively than the control samples. The novel nanofibrous wound dressings provide a relatively rapid and efficacious wound-healing ability, making the obtained nanofibers promising candidates for the development of improved bandage materials.


Assuntos
Anti-Infecciosos/química , Bandagens , Nanopartículas Metálicas/química , Nanofibras/química , Anti-Infecciosos/farmacologia , Capsaicina/química , Capsaicina/farmacologia , Quitosana/química , Quitosana/farmacologia , Ciprofloxacina/análogos & derivados , Ciprofloxacina/química , Ouro/química , Mel/microbiologia , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Polifosfatos/química , Staphylococcus aureus/efeitos dos fármacos , Vibrio vulnificus/efeitos dos fármacos , Cicatrização
7.
Eur J Med Chem ; 83: 646-54, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25014638

RESUMO

In this research, we have synthesized guanidine functionalized PEGylated mesoporous silica nanoparticles as a novel and efficient drug delivery system (DDS). For this purpose, guanidine functionalized PEGylated I3ad mesoporous silica nanoparticle KIT-6 [Gu@PEGylated KIT-6] was utilized as a promising system for the effective delivery of curcumin into the breast cancer cells. The modified mesoporous silica nanoparticles (MSNs) was fully characterized by different techniques such as transmission and scanning electron microscopy (TEM & SEM), N2 adsorption-desorption measurement, thermal gravimetric analysis (TGA), X-ray powder diffraction (XRD), and dynamic light scattering (DLS). The average particle size of [Gu@PEGylated KIT-6] and curcumin loaded [Gu@PEGylated KIT-6] nanoparticles were about 60 and 70 nm, respectively. This new system exhibited high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. It showed pH-responsive controlled characteristics and highly programmed release of curcumin leading to the satisfactory results in in vitro breast cancer therapy. Our results depicted that the pure nanoparticles have no cytotoxicity against human breast adenocarcinoma cells (MCF-7), mouse breast cancer cells (4T1), and human mammary epithelial cells (MCF10A).


Assuntos
Neoplasias da Mama/patologia , Curcumina/química , Curcumina/farmacologia , Guanidina/química , Nanopartículas/química , Polietilenoglicóis/química , Dióxido de Silício/química , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico , Neoplasias da Mama/tratamento farmacológico , Curcumina/metabolismo , Curcumina/uso terapêutico , Portadores de Fármacos/química , Humanos , Células MCF-7 , Camundongos , Modelos Moleculares , Conformação Molecular , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...